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Problem Set No. 4

     Due Wed. April 12

Spring 2006






           Collaboration Allowed

1. Textbook #22, Pg.330. 
To assess how “well-connected” two nodes in a directed graph are, one can not only look at the length of the shortest path between them, but can also count the number of shortest paths.


This turns out to be a problem that can be solved efficiently, subject to some restrictions on the edge costs.  Suppose we are given a directed graph 
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 with costs on the edges; the costs may be positive or negative, but every cycle in the graph has strictly positive cost. We are also given two nodes 
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 Give an efficient algorithm that computes the number of shortest 
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 paths in 
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 (The algorithm should not list all the paths; just the number suffices.)

2. Textbook #11, Pg. 420.
Your friends have written a very fast piece of maximum-flow code based on repeatedly finding augmenting paths as in Section 7.1. However, after you’ve looked at a bit of output from it, you realize that it’s not always finding a flow of maximum value. The bug turns out to be pretty easy to find; your friends hadn’t really gotten into the whole backward-edge thing when writing the code, and so their implementation builds a variant of residual graph that only includes the forward edges. In other words, it searches for 
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 paths in a graph 
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consisting only of edges
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 and it terminates when there is no augmenting path consisting entirely of such edges.  We’ll call this the Forward-Edge-Only Algorithm. (Note that we do not try to prescribe how this algorithm chooses its forward-edge paths; it may choose them in any fashion it wants, provided that it terminates only when there are no forward-edge paths.)

It’s hard to convince your friends they need to reimplement the code. In addition to its blazing speed, they claim, in fact, that it never returns a flow whose value is less than a fixed fraction of optimal. Do you believe this? The crux of their claim can be made precise in the following statement.


There is an absolute constant 
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(independent of the particular input flow network), so that on every instance of the Maximum-Flow Problem, the Forward-Edge-Only Algorithm is guaranteed to find a flow of value at least 
[image: image10.wmf]1/
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 times the maximum-flow value (regardless of how it chooses its forward-edge paths).

Decide whether you think this statement is true or false, and give a proof of either the statement or its negation. 

For this problem, use the definitions in the book, not in my transparencies, for flow and residual graph.
3. Textbook #25 Pg. 429.
Suppose you live in a big apartment with a lot of friends. Over the course of a year, there are many occasions when one of you pays for an expense shared by some subset of the apartment, with the expectation that everything will get balanced out fairly at the end of the year. For example, one of you may pay the whole phone bill in a given month, another will occasionally make communal grocery runs to the nearby organic food emporium, and a third might sometimes use a credit card to cover the whole bill at the local Italian-Indian restaurant, Little Idli.

In any case, it’s now the end of the year and time to settle up. There are 
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 people in the apartment; and for each ordered pair 
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there’s an amount 
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that 
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 accumulated over the course of the year. We will require that for any two people 
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at least one of the quantities 
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or 
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 is equal to 0. This can be easily made to happen as follows: If it turns out that 
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a positive amount 
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 a positive amount 
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 then we will subtract off 
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from both sides and declare 
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 In terms of all these quantities, we now define the imbalance of a person 
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to be  the sum of the amounts that 
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owes everyone else, minus the sum of the amounts that 
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 is owed by everyone else. (Note that an imbalance can be positive, negative, or zero.)

In order to restore all imbalances to 0, so that everyone departs on good terms, certain people will write checks to others; in other words, for certain ordered pairs 
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We will say that a set of checks constitutes a reconciliation if, for each person 
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 the total value of the checks received by 
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 minus the total value of the checks written by 
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 is equal to the imbalance of 
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 Finally, you and your friends feel it is bad form for 
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to write
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a check if 
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did not actually owe
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money, so we say that a reconciliation is consistent if, whenever 
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it is the case that  
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Show that, for any set of amounts 
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there is always a consistent reconciliation in which at most 
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 checks get written, by giving a polynomial-time algorithm to compute such a reconciliation.
4. Textbook #42, Pg. 443.

Give a polynomial-time algorithm for the following minimization analogue of the Maximum-Flow Problem. You are given a directed graph 
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with a source 
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 and sink 
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 and numbers (capacities) 
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 for each edge 
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 We define a flow 
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and the value of a flow, as usual, requiring that all nodes except 
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 satisfy flow conservation. However, the given numbers are lower bounds on edge flow-that is, they require that 
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for every edge 
[image: image58.wmf](,),

vwE

Î

 and there is no upper bound on flow values on edges.
(a) Give a polynomial-time algorithm that finds a feasible flow of minimum possible value.

(b) Prove an analogue of the Max-Flow Min-Cut Theorem for this problem (i.e., does min-flow=max-cut?).

5. Textbook #40, Pg, 441.

In a lot of numerical computations, we can ask about the “stability” or “robustness” of the answer. This kind of question can be asked for combinatorial problems as well; here’s one way of phrasing the question for the Minimum Spanning Tree Problem.

Suppose you are given a graph 
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 with a cost 
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on each edge 
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 We view the costs as quantities that have been measured experimentally, subject to possible errors in measurement. Thus, the minimum spanning tree one computes for 
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may not in fact be the “real” minimum spanning tree.


Given error parameters 
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and a specific edge 
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you would like to be able to make a claim of the following form.
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Even if the cost of each edge were to be changed by at most 
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(either increased or decreased), and the costs of 
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of the edges other than 
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were further changed to arbitrarily different values, the edge 
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would still not belong to any minimum spanning tree of 
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Such a property provides a type of guarantee that 
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is not likely to belong to the minimum spanning tree, even assuming significant measurement error.

Give a polynomial-time algorithm that takes 
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and decides whether or not property 
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 holds for 
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